

INVERTER SERIES V1000

V1000

YASKAWA INVERTER DRIVE TECHNOLOGY

Contents

Page 2

Experience & Innovation A leader in Inverter Drives technology

V1000 – Easy and cost-saving handling through all kinds of applications

Page 3

"One for all" – Multiple Applications

Page 4/5 Specifications

Page 6 Connection Diagram

Page 7
 V1000 Dimensions

Page 8
 V1000 Finless Version
 Dimensions

Page 9 V1000 IP66 Dimensions

Page 10

Options

Page 11

Ratings & Type Descriptions incl. finnless

Experience & Innovation

For more than 90 years YASKAWA has been manufacturing and supplying mechatronic products for machine building and industrial automation. Its standard products as well as tailor-made solutions are famous and have a high reputation for outstanding quality and durability.

A leader in Inverter Drives technology

Extensive research and development has allowed YASKAWA to remain at the forefront of motion control and automation technology. This technological leadership has helped to modernise industries such as mining, steel, pulp and paper, chemical, automotive, packaging, machine tool and semiconductor.

In 2007 YASKAWA produced its 10 millionth inverter in the new inverter plant in Yukuhashi, Japan. By this YASKAWA is probably the biggest inverter manufacturer in the world.

The 10 millionth inverter was a V1000, the latest inverter developed by YASKAWA. Awarded by IEN magazine as being the 'most innovative product 2007' at Hanover Fair Industry 2007 the V1000 has raised the bar in the market in terms of usability and reliability.

V1000 – Easy and cost-saving handling through all kinds of applications

This powerful little helper sets standards in terms of user friendliness and process orientation. The development of the V1000 focuses on all aspects of application, installation, operation and maintenance.

Safety Integrated

YASKAWA V1000 is one of the first general purpose compact drives with built-in two channel hardware base block input. It already meets international safety standards and thereby supports machine builder to apply to international machine directives.

Finless Type

YASKAWA has as one of the first manufacturers promoted the development of finless type inverters for the European and international markets. Consequently the V1000 is available as finless version for applications with an external cooling system.

YASKAWA V1000 Features

- Dual Safety Input, safety category 3 (EN954-1) and stop category 0 (EN60204-1) and IEC-61508 SIL2
- In normal duty (120% overload) one frame size larger motor can be driven
- Standard AC Motor and PM motor control
- V/f and open-loop current vector control
- One of the smallest inverter drives in the world
- Side-by-side mounting
- Icon-based programming
- Designed for 10 years of maintenance-free operation

YASKAWA V1000

"One for all" - Multiple Applications

YASKAWA V1000 is a general purpose inverter drive covering the demands of a wide field of applications. Simple duties as well as requirements of complex systems need a higher level of functionality, reliability and easy handling, which are provided by the V1000.

- For energy saving, permanent magnet motor control is possible
- Selectable control method: open-loop current vector or V/f
- Small Design Big Power: 150% overload in heavy duty service is possible. For applications with low overload requirements the drive can be operated with 120% overload in normal duty service. Consequently you can use a drive of smaller size to do the work of a bigger one.
- Worldwide specification CE, UL, cUL, RoHS (TÜV safety approved)
- High flux braking reduces braking time to the half

Easy Installation

YASKAWA V1000 reduces installation time and costs. Installable in tight spaces it requires a minimum of set-up time and provides you all the comfort of a modern up-to-date inverter drive.

- One of the smallest inverter drives in the world saves mounting space and cost by side-by-side mounting
- Application parameter pre-settings shorten set-up time
- Same handling and parameter structure for all YASKAWA inverters
- DriveWorksEZ visual programming tool. Simply drag and drop icons to customize your drive. Create special sequences and detection functions, then load them onto the drive.

Quick Maintenance

Reliable Operation

The V1000 continues the tradition of YASKAWA by being the reliable link in your production chain.

- Designed for Long Performance Life (10 years 24 h per day at 80% nominal load.)
- Quick response on load and speed changes improves your machine performance
- Online Auto-Tuning to optimise for improved motor performance at low speed
- Optional external 24 VDC-supply assures communication and data flow in any power-down situation
- Dual safety input: safety category 3 (EN954-1), stop category 0 and IEC-61508 SIL2

YASKAWA V1000 is an inverter drive which adapts to user demands and provides maintenance functions that ensure quick replacement and minimize down time.

- Removable terminal board with parameter memory for quick and easy maintanance
- Screwless control terminal saves setup time

Specifications

	Voltage class			Sing	jle-phase 2	00 V							
	Inverter model CIMR-VCBA*1	0001	0002	0003	0006	0010	0012	00018*6					
	Motor output kW at normal duty*2	0.18	0.37	0.75	1.1	2.2	3.0	-					
	Motor output kW at heavy duty *2	0.1	0.18	0.55	0.75	1.5	2.2	4.0					
	Rated output current at normal duty [A]*3	1.2	1.9	3.3	6	9.6	12	-					
put	Rated output current at heavy duty [A]	0.8*4 1.6*4 3.0*4 5.0*4 8.0*5 11.0*5 17.5*5											
nverter output	Overload				normal duty n inverter ra	, ,							
lnve	Rated output power at normal duty [kVA]*	0.5	0.7	1.3	2.3	3.7	4.6	-					
	Rated output power at heavy duty [kVA]*	0.3	0.6	1.1	1.9	3.0	4.2	6.7					
	Max. output voltage		Three-pha	ise 200 to 2	40 V (propor	tional to inp	out voltage)						
	Max. output frequency	400 Hz											
Inverter	Rated input voltage	Single-phase 200 to 240 V, -15% to +10%											
input	Rated input frequency	50/60 Hz, ±5%											

based on input voltage 220 V

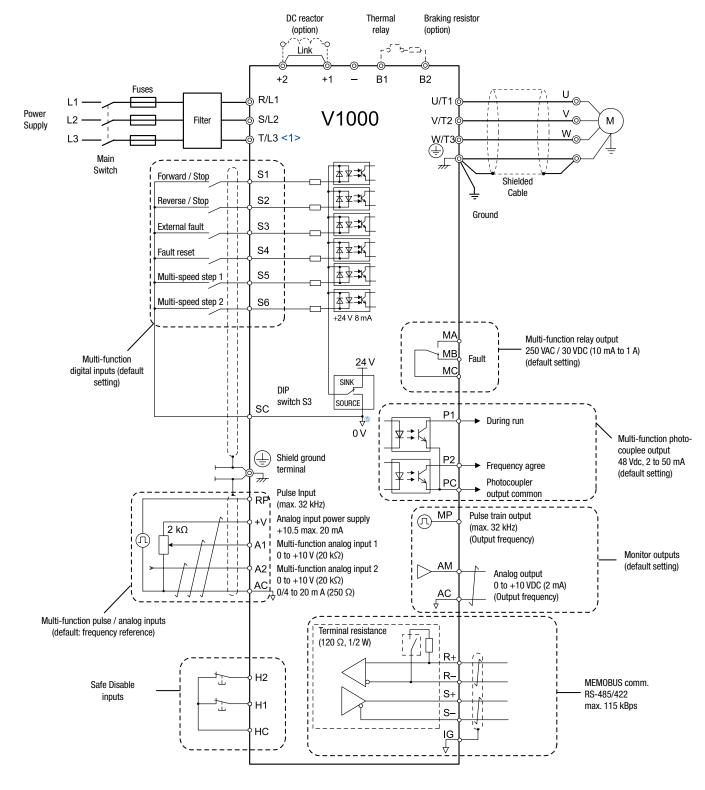
	Voltage class					Thr	ee-phase 20	V 00						
	Inverter model CIMR-VC2A	0001	0002	0004	0006	0010	0012	0020	0030	0040	0056	0069		
	Motor output kW at normal duty*2	0.18	0.37	0.75	1.1	2.2	3.0	5.5	7.5	11.0	15.0	18.5		
	Motor output kW at heavy duty*2	0.1	0.2	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11.0	15.0		
ŧ	Rated output current at normal duty [A]*3	1.2	1.9	3.5	6.0	9.6	12.0	19.6	30.0	40.0	56.0	69.0		
output	Rated output current at heavy duty [A]	0.8*4	0.8 ^{*4} 1.6 ^{*4} 3.0 ^{*4} 5.0 ^{*4} 8.0 ^{*5} 11.0 ^{*5} 17.5 ^{*5} 25.0 ^{*5} 33.0 ^{*5} 47.0 ^{*5} 60.0 [*]											
er o	Overload		120% f	or 60 sec at	normal duty	, 150% for	60 sec at he	avy duty fro	om inverter i	rated output	current			
Provide 120% for 60 sec at normal duty, 150% for 60 sec at neavy duty from inverter ra Rated output power at normal duty [kVA]* 0.5 0.7 1.3 2.3 3.7 4.6 7.5 11.4								15.2	21.3	26.3				
-	Rated output power at heavy duty [kVA]*	0.3	0.6	1.1	1.9	3.0	4.2	6.7	9.5	12.6	17.9	22.9		
	Max. output voltage				Three-pha	se 200 to 2	40 V (propor	tional to inp	ut voltage)					
	Max. output frequency 400 Hz													
Inverter	Rated input voltage				Thr	ee-phase 2	00 to 240 V,	-15% to +1	0%					
input	Rated input frequency					5	0/60 Hz, ±5	%						

ed on input voltage 220V

Voltage class					Thre	ee-phase 4	00 V						
Inverter model CIMR-VC4A	0001	0002	0004	0005	0007	0009	0011	0018	0023	0031	0038		
Motor output kW at normal duty*2	0.37	0.75	1.5	2.2	3.0	4.0	5.5	7.5	11	15.0	18.5		
Motor output kW at heavy duty*2	0.18	0.37	0.75	1.5	2.2	3.0	4.0	5.5	7.5	11.0	15.0		
Rated output current at normal duty [A]*3	1.2	2.1	4.1	5.4	6.9	8.8	11.1	17.5	23.0	31.0	38.0		
Rated output current at heavy duty [A]*5	1.2	1.8	3.4	4.8	5.5	7.2	9.2	14.8	18.0	24.0	31.0		
Overload	1.2 1.8 3.4 4.8 5.5 7.2 9.2 14.8 18.0 24.0 31.0 120% for 60 sec at normal duty, 150% for 60 sec at heavy duty from inverter rated output current 100% 100% 11% 10%												
Rated output power at normal duty [kVA]*	0.9	1.6	3.1	4.1	5.3	6.7	8.5	13.3	17.5	23.6	29.0		
Rated output power at heavy duty [kVA]*	0.9	1.4	2.6	3.7	4.2	5.5	7.0	11.3	13.7	18.3	23.6		
Max. output voltage				Three-pha	se 380 to 4	80 V (propor	tional to inp	ut voltage)					
Max. output frequency						400 Hz							
Rated input voltage	Three-phase 380 to 480 V, -15% to +10%												
Rated input frequency					5	0/60 Hz, ±5	%						
	Inverter model CIMR-VC4A Motor output kW at normal duty* ² Motor output kW at heavy duty* ² Rated output current at normal duty [A]* ³ Rated output current at heavy duty [A]* ⁵ Overload Rated output power at normal duty [kVA]* Rated output power at heavy duty [kVA]* Max. output voltage Max. output frequency Rated input voltage	Inverter model CIMR-VC4A0001Motor output kW at normal duty*20.37Motor output kW at normal duty*20.18Rated output current at normal duty [A]*31.2Rated output current at heavy duty [A]*51.2Overload	Inverter model CIMR-VC4A 0001 0002 Motor output kW at normal duty*2 0.37 0.75 Motor output kW at normal duty*2 0.18 0.37 Rated output current at normal duty [A]*3 1.2 2.1 Rated output current at heavy duty [A]*5 1.2 1.8 Overload 120% fr Rated output power at normal duty [KVA]* 0.9 1.6 Rated output voltage 1.4 1.4 Max. output requency Rated input voltage 1.4	Inverter model CIMR-VC4A 0001 0002 0004 Motor output kW at normal duty*2 0.37 0.75 1.5 Motor output kW at normal duty*2 0.18 0.37 0.75 Rated output current at normal duty [A]*3 1.2 2.1 4.1 Rated output current at normal duty [A]*5 1.2 1.8 3.4 Overload 120% for 60 sec at 120% for 60 sec at Rated output power at normal duty [kVA]* 0.9 1.6 3.1 Rated output voltage	Inverter model CIMR-VC4A 0001 0002 0004 0005 Motor output kW at normal duty*2 0.37 0.75 1.5 2.2 Motor output kW at normal duty*2 0.18 0.37 0.75 1.5 2.2 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 3.5 Rated output current at normal duty [A]*3 1.2 2.1 4.1 5.4 Rated output current at heavy duty [A]*5 1.2 1.8 3.4 4.8 Overload 120% for 60 sec at normal duty Rated output power at normal duty [kVA]* 0.9 1.6 3.1 4.1 Rated output power at heavy duty [kVA]* 0.9 1.4 2.6 3.7 Max. output voltage Three-pha Max. output frequency Three structures Rated input voltage Three structures	Inverter model CIMR-VC4A 0001 0002 0004 0005 0007 Motor output kW at normal duty*2 0.37 0.75 1.5 2.2 3.0 Motor output kW at normal duty*2 0.18 0.37 0.75 1.5 2.2 3.0 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 Rated output current at normal duty [A]*3 1.2 2.1 4.1 5.4 6.9 Rated output current at heavy duty [A]*5 1.2 1.8 3.4 4.8 5.5 Overload 120% for 60 sec at normal duty, 150% for 15.3 2.2 3.0 Rated output power at normal duty [KVA]* 0.9 1.6 3.1 4.1 5.3 Rated output power at heavy duty [kVA]* 0.9 1.4 2.6 3.7 4.2 Max. output voltage	Inverter model CIMR-VC4A 0001 0002 0004 0005 0007 0009 Motor output kW at normal duty*2 0.37 0.75 1.5 2.2 3.0 4.0 Motor output kW at normal duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 Rated output current at normal duty [A]*3 1.2 2.1 4.1 5.4 6.9 8.8 8 Rated output current at heavy duty [A]*5 1.2 1.8 3.4 4.8 5.5 7.2 0 Overload 120% for 60 sec at normal duty, 150% for 60 sec at here at normal duty [kVA]* 0.9 1.6 3.1 4.1 5.3 6.7 Rated output power at normal duty [kVA]* 0.9 1.4 2.6 3.7 4.2 5.5 Max. output voltage Three-phase 380 to 480 V (propor 400 Hz 400 Hz 400 Hz Rated input voltage Three-phase 380 to 480 V, 400 Hz	Inverter model CIMR-VC4A 0001 0002 0004 0005 0007 0009 0011 Motor output kW at normal duty*2 0.37 0.75 1.5 2.2 3.0 4.0 5.5 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 5.5 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 5.5 Rated output current at normal duty [A]*3 1.2 2.1 4.1 5.4 6.9 8.8 11.1 Rated output current at heavy duty [A]*5 1.2 1.8 3.4 4.8 5.5 7.2 9.2 Overload 120% for 60 sec at normal duty, 150% for 60 sec at heavy duty for 60 8.5 7.0 7.0 Rated output power at heavy duty [kVA]* 0.9 1.4 2.6 3.7 4.2 5.5 7.0 Max. output voltage Image: State at theavy duty (Ingrequency) Image: State at theavy d	Inverter model CIMR-VC4A 0001 0002 0004 0005 0007 0009 0011 0018 Motor output kW at normal duty*2 0.37 0.75 1.5 2.2 3.0 4.0 5.5 7.5 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 5.5 Rated output current at normal duty [A]*3 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 Rated output current at heavy duty [A]*5 1.2 1.8 3.4 4.8 5.5 7.2 9.2 14.8 Overload 120% for 60 sec at normal duty, 150% for 60 sec at heavy duty inverter inverter 13.3	Inverter model CIMR-VC4A 0001 0002 0004 0005 0007 0009 0011 0018 0023 Motor output kW at normal duty*2 0.37 0.75 1.5 2.2 3.0 4.0 5.5 7.5 11 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 5.5 7.5 11 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 5.5 7.5 11 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 5.5 7.5 7.5 Rated output current at normal duty [A]*3 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 23.0 Overload 120% for 60 sec at normal duty, 150% for 60 sec at heavy duty (N/A)* 0.9 1.6 3.1 4.1 5.3 6.7 8.5 13.3 17.5 Rated output power at normal duty [kVA]* 0.9	Inverter model CIMR-VC4A 0001 0002 0004 0005 0007 0009 0011 0018 0023 0031 Motor output kW at normal duty*2 0.37 0.75 1.5 2.2 3.0 4.0 5.5 7.5 11 15.0 Motor output kW at heavy duty*2 0.18 0.37 0.75 1.5 2.2 3.0 4.0 5.5 7.5 11.0 Rated output current at normal duty [A]*3 1.2 2.1 4.1 5.4 6.9 8.8 11.1 17.5 23.0 31.0 Rated output current at heavy duty [A]*5 1.2 1.8 3.4 4.8 5.5 7.2 9.2 14.8 18.0 24.0 Overload 120% for 60 sec at normal duty. [50% for 60 sec at hormal duty [50% for 60 sec at hormal duty is to 400 to 12.0 11.3 13.7 23.6 Rated output power at normal duty [kVA]* 0.9 1.6 3.1 4.1 5.3 6.7 8.5 13.3 17.5 23.6 Rated output power at heavy duty [kVA]* 0.9		

*¹ Drives with a single-phase power supply input have three-phase output. Single-phase motors cannot be used.
*² The motor capacity (kW) refers to a YASKAWA 4-pole, 60 Hz, 200 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
*³ at 2 kHz carrier frequency without derating
*⁴ at 10 kHz carrier frequency without derating
*⁵ at 8 kHz carrier frequency without derating
*⁶ only heavy duty available

Rotational Auto-Tuning must be performed to achieve the performance described with Open Loop Vector Control.


		Specifications
	Control methods	Open Loop Vector Control (Current Vector), V/f Control, PM Open Loop Vector Control (for SPM and IPM motors)
	Frequency Control Range	0.01 to 400 Hz
	Frequency Accuracy	Digital input: within ±0.01% of the max. output frequency (-10°C to +50°C))
	(Temperature Fluctuation)	Analog input: within ±0.1% of the max. output frequency (25°C ±10°C)
	Frequency Setting	Digital input: 0.01 Hz
	Resolution	Analog input: 1/1000 of max. frequency
	Output Frequency Resolution	20 bit of maximum output frequency (parameter E1-04 setting)
s	Frequency Setting Resolution	Main frequency reference: $010 \text{ V} (20 \text{ k}\Omega) 10 \text{ bit}$, $420 \text{ mA} (250 \Omega) \text{ or } 020 \text{ mA} (250 \Omega) 9-\text{bit}$ Main speed reference : Pulse Train Input (max. 32 kHz)
Control Functions	Starting Torque	200% / 0.5 Hz (assumes Heavy Duty rating AC Motor of 3.7 kW or less using Open Loop Vector Control), 50% / 6 Hz (assumes PM Open Loop Vector Control)
I Fu	Speed Control Range	1:100 (Open Loop Vector Control), 1:20 to 40 (V/f Control), 1:10 (PM Open Loop Vector Control)
Itro	Speed Control Accuracy	$\pm 0.2\%$ in Open Loop Vector Control (25°C ± 10 °C) * ¹
<u>8</u>	Speed Response	5 Hz in Open Loop Vector (25°C ±10°C) (requires Rotational Auto-Tuning)
	Torque Limit	Open Loop Vector Control allows separate settings in four quadrants
	Accel/Decel Time	0.0 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)
	Braking Torque	 Short-time decel torque*2: over 150% for 0.1/0.2 kW motors, over 100% for 0.4/ 0.75 kW motors, over 50% for 1.5 kW motors, and over 20% for 2.2 kW and above motors (overexcitation braking/High-Slip Braking: approx. 40%) Continuous regen. torque: approx. 20% (approx. 125% with dynamic braking resistor option*3: 10% ED, 10 s, internal braking transistor)
	V/f Characteristics	User-selected programs, V/f preset patterns possible
	Main Control Functions	Momentary power loss ride-thru, Speed search, Overtorque detection, Torque limit, 17-step speed (max), Accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-tuning (rotational, stationary tuning for resistance between lines), Dwell, Cooling fan on/off switch, Slip compensation, Torque compensation, Frequency jump, Upper/lower limits for frequency reference, DC injection braking at start and stop, Overexcitation braking, High slip braking, PID control (with sleep function), Energy saving control, MEMOBUS comm. (RS-485/422 max, 115.2 kbps), Fault restart, Application presets, DriveWorksEZ (customized function), Removable terminal block with parameter backup function
	Motor Protection	Motor overheat protection based on output current
	Momentary Overcurrent Protection	Drive stops when output current exceeds 200% of Heavy Duty Rating
	Overload Protection	Drive stops after 60 s at 150% of rated output current (Heavy Duty Rating)*4
E	Overvoltage Protection	200 V class: Stops when DC bus exceeds approx. 410 V 400 V class: Stops when DC bus exceeds approx. 820 V
Protection Function	Undervoltage Protection	Stops when DC bus voltage falls below the following levels: Three-phase 200 V class: approx. 190 V, single-phase 200 V class: approx. 160 V, three-phase 400 V class: approx. 380 V, three-phase 380 V class: approx. 350 V
ctio	Momentary Power Loss Ride-Thru	Stops after approx. 15 ms (default). Parameter settings allow the drive to continue running if power loss lasts for up to approx. 2 s *5
rote	Heatsink Overheat Protection	Protection by thermistor
•	Braking Resistance Overheat Protection	Overheat sensor for braking resistor (optional ERF-type, 3% ED)
	Stall Prevention	Separate settings allowed during acceleration, and during run. Enable/disable only during deceleration.
	Ground Fault Protection	Protection by electronic circuit *6
	Charge LED	Charge LED remains lit until DC bus has fallen below approx. 50 V
lent	Area of Use	Indoors
Operating Environment	Ambient Temperature	-10°C to +50°C (open chassis), -10°C to +40°C (NEMA Type 1)
ivi	Humidity	95 RH% or less (no condensation)
ing E	Storage Temperature	-20°C to +60°C (short-term temperature during transportation)
erati	Altitude	Max. 1000 m (output derating of 1% per 100 m above 1000 m, max. 3000 m)
0 D	Shock	10 to less than 20 Hz (9.8 m/s2) max., 20 to 55 Hz (5.9 m/s2) max.
	Safety Standard	UL508C, EN954-1 Cat. 3, IEC/EN61508 SIL2
	Protection Design	IP20 open-chassis, NEMA Type 1 enclosure

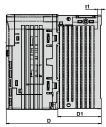
Speed control accuracy may vary slightly depending on installation conditions or motor used.

⁴ Speed control accuracy may vary slightly depending on installation conditions or motor used.
 ² Momentary average deceleration torque refers to the deceleration torque from 60Hz down to 0 Hz. This may vary depending on the motor.
 ² II L3-O4 is enabled when using a braking resistor or braking resistor braking resistor or braking resistor or braking resistor o

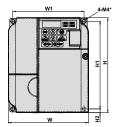
Connection Diagram

 \ddagger Use twisted pair cables.

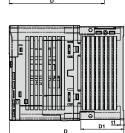
- Use shielded twisted pair cables.
- Indicates a main circuit terminal.
- Indicates a control circuit terminal.



IP20/Open-Chassis (without an EMC filter)

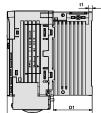

Voltage Class	Drive Model				Dim	ensions	in mm			
Vullaye Glass	CIMR-VC	W1	H1	W	Н	D	t1	H2	D1	Weight (kg)
Single-Phase	BA0001B BA0002B	56	118	68	128	76	3	5	6.5	0.6
200 V Class	BA0003B	00				118	5	1	38.5	1.0
Three-Phase	2A0001B 2A0002B	50	110	<u></u>	100	76	3	F	6.5	0.6
200 V Class	2A0004B	56	118	68	128	108	5	5	38.5	0.9
	2A0006B					128	5		58.5	1.1

Voltage Class	Drive Model				Dim	nensions	in mm			
VUILAYE GIASS	CIMR-VC 🗆	W1	H1	W	Н	D	t1	H2	D1	Weight (kg)
	BA0006B	96		108		137.5			58	1.7
Single-Phase	BA0010B	90	118	100	128	154	5	5	50	1.8
200 V Class	BA0012B	128	110	140	120	163			65	2.4
	BA0018B	158 96		170		180			60	3.0
Three-Phase	2A0010B	06		108		129			58	1.7
200 V Class	2A0012B	90	118	100	128	137.5	5	5	00	1.7
200 V GIdSS	2A0020B	128		140		143			65	2.4
	4A0001B	128				81			10	1.0
	4A0002B					99			28	1.2
Three-Phase	4A0004B	96 .		108		137.5				
400 V Class	4A0005B	30	118	100	128		5	5	58	1.7
400 V 61855	4A0007B					154			50	1.7
	4A0009B	_								
	4A0011B	128		140		143			65	2.4



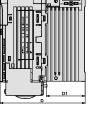
YASKAWA

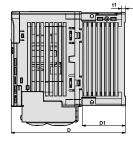
*inner diameter for M4 screws

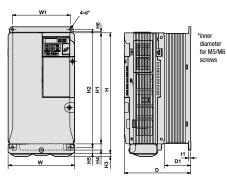

IP20/NEMA Type 1 (without an EMC filter)

Voltage Class	Drive Model						Dim	ensio	ns in	mm				
Vollage Glass	CIMR-VC	W1	H2	W	H1	D	t1	H5	D1	H	H4	H3	H6	Weight (kg)
Single-Phase	BA0001F BA0002F	56	118	68	128	76	3	5	6.5	149.5	20	4	1.5	0.8
200 V Class	BA0003F					118	5		39					1.2
Three-Phase	2A0001F 2A0002F	56	110	C 0	100	76	3	F	6.5	140.5	20	4	1.5	0.8
200 V Class	2A0004F	00	110	118 68	128	108	5	5	39	149.5	20	4	1.5	1.1
	2A0006F					128	3 5		59					1.3

Voltage Class	Drive Model						Dim	ensio	ns in	mm				
VUILAYE GIASS	CIMR-VC	W1	H2	W	H1	D	t1	H5	D1	H	H4	H3	H6	Weight (kg)
Single-Phase	BA0006F BA0010F	96	110	108	100	137.5 154	F	F	58	149.5	20	4	1.5	1.9 2.0
200 V Class	BA0012F	128	118	140	128	163	5	5	65	153		4.8	5	2.6
	BA0018F	158		170		180			65	171	38	4.0	5	3.3
Three-Phase	2A0010F	96		108		129			58	149.5		4	1.5	1.9
200 V Class	2A0012F	30	118	100	128	137.5	5	5	50	143.5	20	4	1.5	1.5
200 V 01055	2A0020F	128		140		143			65	153		4.8	5	2.6
	4A0001F					81			10					1.2
	4A0002F					99			28					1.4
Three-Phase	4A0004F	06	96	108		137.5				1/0 5		4	1.5	
400 V Class	4A0005F	90	⁹⁶ 118	100	128		5	5	149.5	20	4	1.5	1.9	
400 V GIASS	4A0007F				154		58					1.9		
	4A0009F													
	4A0011F	128		140		143			65	153		4.8	5	2.6

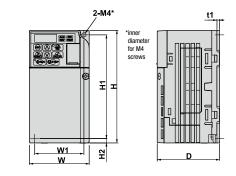

Voltage Class	Drive Model						D	imen	sions	s in m	m					
VUILAYE GIASS	CIMR-VC	W1	H2	W	H1	D	t1	H5	D1	Н	H4	H3	H6	d	Weight (kg)	
Three-Phase	2A0030F 2A0040F	122	248	140	234	140	-	13	55	254	13	6	1.5	M5	3.8	
200 V Class	2A0056F	160	284	180	270		5	·	75	290	15		1.5		5.5	
	2A0069F	192	336	220	320	187		22	78	350	15	7		M6	9.2	
	4A0018F	122			234	34 140				254	13				3.8	
Three-Phase	4A0023F	122	240	140	234	140	5	12	55	204	15	6	1.5	M5	3.0	
400 V Class		160 284		100	270	143	3 5	13		290	15	0	1.5	UND	5.2	
	4A0031F 4A0038F	160	204	180	270	2/0	163			75	290	13				5.5

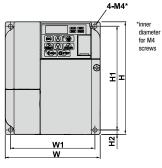


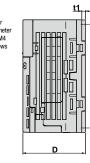


*inner diameter for M4 screws

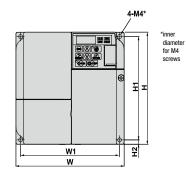
V1000 Dimensions

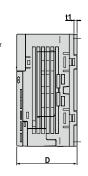



... for Models BA0001~2A0006

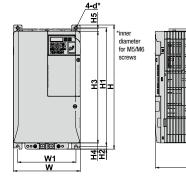

Voltage Class	Drive Model				Dimensi	ons in mn	n		
VUILAYE GIASS	CIMR-VC 🗆	W	H	D	W1	H1	H2	t1	Weight (kg)
Oliverta Diversa	BA0001			71					0.6
Single-Phase 200 V Class	BA0002	68	128		56	118	5	3	0.0
200 ¥ 01833	BA0003			81					0.8
	2A0001								0.6
Three-Phase	2A0002	68	128	71	56	118	5	3	0.0
200 V Class	2A0004	00					5	5	0.7
	2A0006								0.7

	Drive Model				Dimensi	ons in mn	n					
Voltage Class	CIMR-VC 🗆	W	Н	D	W1	H1	H2	t1	Weight (kg)			
Single-Phase	BA0006	108	128	79.5	96	118	5	4	1.1			
200 V Class	BA0010	100	120	91	90	110	5	4	1.1			
Three Dhoos	2A0008			71								
Three-Phase 200 V Class	2A0010	108	128	/1	96	118	5	4	1.0			
200 9 01033	2A0012			79.5								
	4A0001			71					0.9			
	4A0002						11					0.9
Three-Phase	4A0004	108	128	79.5	96	118	5	4	1.0			
400 V class	4A0005	100	120		90	110	5	4	1.0			
	4A0007			96					1.1			
	4A0009								1.1			

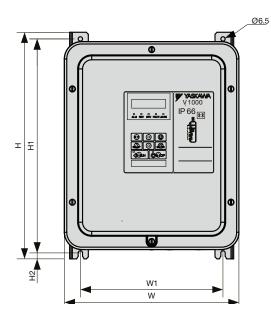


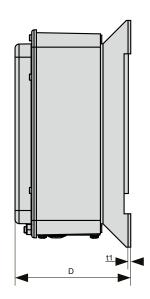

... for Models BA0012~4A0011

Voltore Close	Drive Model				Dimensi	ons in mn	n		
Voltage Class	CIMR-VC 🗆	W	H	D	W1	H1	H2	t1	Weight (kg)
Single-Phase 200 V Class	BA0012	140	128	98	128	118	5	4	1.4
Three-Phase 200 V Class	2A0018 2A0020	140	128	78	128	118	5	4	1.3
Three-Phase 400 V class	4A0011	140	128	78	128	118	5	4	1.3


... for Models 2A0030~4A0038

Voltore Close	Drive Model	Dimensions in mm											
Voltage Class	CIMR-VC	W	H	D	W1	H1	H2	H3	H4	H5	d	t1	Weight (kg)
	2A0030	140	260	145	122	248	6	234	10	13	M5	F	3.2
Three-Phase	2A0040	140	200	145	122	240	0	234	15				5.2
200 V Class	2A0056	180	300	147	160	284	8	270	15		5	4.6	
	2A0069	220	350	152	192	336	7	320	15	15	M6		7.0
	4A0018	140	260	145	122	248	6	6 234	4 13	5	M5	5	3.1
Three-Phase 400 V Class	4A0023		200			240	0						3.2
	4A0031	180	300	147	160	284	8	0 070	70 15				4.3
	4A0038	100	300	147	100	204	0	270				4.6	

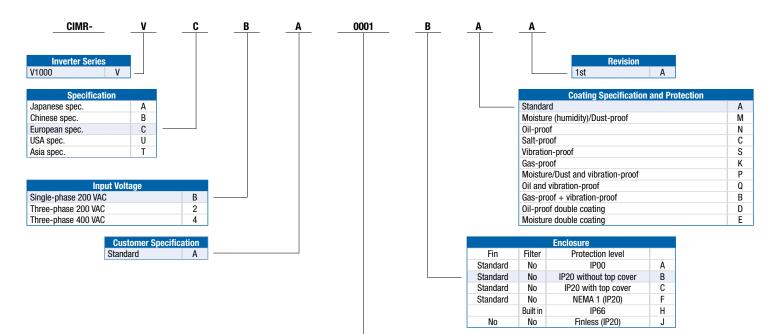



п

V1000 IP66 Dimensions

Inverter model	Dimensions in mm						
CIMR-VC 🗆	W	Н	D	W1	H1	H2	t1
BA0001		340	173.5	214	321	9	2
BA0002							
BA0003	262						
BA0006	202						
BA0010							
BA0012							
BA0018				under development			
2A0001			173.5	214	321	9	
2A0002							2
2A0004		340					
2A0006	262						
2A0010							
2A0012							
2A0020							
2A0030							
2A0040				under development			
2A0056							
2A0069							
4A0001			173.5	214	321	9	
4A0002							
4A0004							
4A0005	262	340					2
4A0007							
4A0009							
4A0011							
4A0018							
4A0023		under development					
4A0031							
4A0038							

Data and Dimensions are preliminary and subject to be changed at any time.


Options

Name		Purpose	Model, Manufacturer	
Name		Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	1-phase 200 V Filter: CIMR-VCBA0001 F523638-10-07 CIMR-VCBA0002 F523638-10-07 CIMR-VCBA0003 F523638-10-07 CIMR-VCBA0006 F523638-20-07 CIMR-VCBA0010 F523638-20-07 CIMR-VCBA0012 F523638-20-07 CIMR-VCBA0012 F523638-20-07 CIMR-VCBA0012 F523638-20-07 CIMR-VCBA0012 F523637-8-07 CIMR-VC2A0001 F523637-8-07 CIMR-VC2A0006 F523637-8-07 CIMR-VC2A0006 F523637-8-07 CIMR-VC2A0010 F523637-8-07 CIMR-VC2A0010 F523637-14-07 CIMR-VC2A0010 F523637-14-07 CIMR-VC2A0020 F523637-52-07 CIMR-VC2A0030 F523637-52-07 CIMR-VC2A0040 F523637-80-07 CIMR-VC2A0056 F523637-80-07 CIMR-VC2A0056 F523639-50-07 CIMR-VC4A0005 F523639-50-07 CIMR-VC4A0004 F523639-50-07 CIMR-VC4A0005 F523639-10-07 CIMR-VC4A0005 F523639-10-07 CIMR-VC4A	
Braking resistor		Used to shorten the deceleration time by dissipating regenerative energy through a resistor (3% ED).	ERF-150WJ series	
24 V power supply		Provides power supply for the control circuit and option boards. Note: Parameter settings cannot be changed when the drive is operating solely from this power supply.	PS-V10S PS-V10M	
USB copy unit (RJ-45/USB compa	,	Adapter for connecting the drive to the USB port of a PC. (e.g. for Support Tool Drive Wizard Plus) Can copy parameter settings to be later transferred to another drive.	JVOP-181	
Support tools (Driv cable	/eWizard Plus)	Connects the drive to a PC for use with DriveWizard.	WV103	
LCD operator		For easier operation when using the optional LCD operator. Allows for remote operation. Includes a Copy function for saving drive settings.	JVOP-180	
LCD operator exte	nsion cable	Cable for connecting the LCD operator.	WV001: 1 m WV003: 3 m	
MECHATROLINK-2 Communication interface unit CC-link DeviceNet PROFIBUS-DP CANopen CANopen		Allows control of the drive via a fieldbus network.	SI-T3/V SI-C3/V SI-N3/V SI-P3/V SI-S3/V	
Momentary power loss recovery unit		Ensures continued drive operation for a power loss of up to 2 s.	P0010 type (200 V class) P0020 type (400 V class)	
Attachment for external heatsink		Mechanical kit to install the drive with the heatsink out of the cabinet. Note: current derating must be considered when this installation method is used.	(Please contact your YASKAWA representative)	
Screw-type termin	al board	Control terminal board with screw-type terminals.	Available soon	
Plus operator mou	nting kit	For the use with holes through the panel.	100-039-992	
		For the use with panel mounted threaded studs.	100-039-993	

Note: contact the manufacturer in question for availability and specifications of non-YASKAWA products.

ALMREVDRVFOUT

(RUN

° P

ESO

Single-phase 200 VAC							
	Norm	al duty	Heavy duty				
	Rated output current	Max. applicable motor	Rated output current	Max. applicable motor			
0001	1.2 A	0.18 kW	0.8 A	0.1 kW			
0002	1.9 A	0.37 kW	1.6 A	0.18 kW			
0003	3.3 A	0.75 kW	3.0 A	0.55 kW			
0006	6.0 A	1.1 kW	5.0 A	0.75 kW			
0010	9.6 A	2.2 kW	8.0 A	1.5 kW			
0012	12.0 A	3.0 kW	11.0 A	2.2 kW			
0018	-	_	17.5 A	4.0 kW			

		Three-phase 200) VAC		
	Norm	al duty	Heavy duty		
	Rated output current	Max. applicable motor	Rated output current	Max. applicable motor	
0001	1.2 A	0.4 kW	0.8 A	0.1 kW	
0002	1.9 A	0.37 kW	1.6 A	0.2 kW	
0004	3.5 A	0.75 kW	3.0 A	0.4 kW	
0006	6.0 A	1.1 kW	5.0 A	0.75 kW	
0010	9.6 A	2.2 kW	8.0 A	1.5 kW	
0012	12.0 A	3.0 kW	11.0 A	2.2 kW	
0020	19.6 A	5.5 kW	17.5 A	4.0 kW	
0030	30.0 A	7.5 kW	25.0 A	5.5 kW	
0040	40.0 A	11.0 kW	33.0 A	7.5 kW	
0056	56.0 A	15.0 kW	47.0 A	11.0 kW	
0069	69.0 A	18.5 kW	60.0 A	15.0 kW	

Three-phase 400 VAC								
	Norm	al duty	Heavy duty					
	Rated output current	Max. applicable motor	Rated output current	Max. applicable motor				
0001	1.2 A	0.37 kW	1.2 A	0.2 kW				
0002	2.1 A	0.75 kW	1.8 A	0.4 kW				
0004	4.1 A	1.5 kW	3.4 A	0.75 kW				
0005	5.4 A	2.2 kW	4.8 A	1.5 kW				
0007	6.9 A	3.0 kW	5.5 A	2.2 kW				
0009	8.8 A	4.0 kW	7.2 A	3.0 kW				
0011	11.1 A	5.5 kW	9.2 A	4.0 kW				
0018	17.5 A	7.5 kW	14.8 A	5.5 kW				
0023	23.0 A	11.0 kW	18.0 A	7.5 kW				
0031	31.0 A	15.0 kW	24.0 A	11.0 kW				
0038	38.0 A	18.5 kW	31.0 A	15.0 kW				

YASKAWA Electric Europe GmbH Hauptstr. 185 65760 Eschborn Deutschland / Germany

+49 6196 569-300 info@yaskawa.de www.yaskawa.eu.com

NoHS Directive Stands for the EU directive on the Restriction of the Use of Certain Historidous Substances in Electrical and Electricite Equations

Specifications are subject to change without notice for ongoing product modifications and improvements. © YASKAWA Electric Europe GmbH. All rights reserved.